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Migraine Triggers and Oxidative Stress: A Narrative Review

and Synthesis

Jonathan M. Borkum, PhD

Background.—Blau theorized that migraine triggers are exposures that in higher amounts would damage the brain.

The recent discovery that the TRPA1 ion channel transduces oxidative stress and triggers neurogenic inflammation sug-

gests that oxidative stress may be the common denominator underlying migraine triggers.

Objective.—The aim of this review is to present and discuss the available literature on the capacity of common

migraine triggers to generate oxidative stress in the brain.

Methods.—A Medline search was conducted crossing the terms “oxidative stress” and “brain” with “alcohol,”

“dehydration,” “water deprivation,” “monosodium glutamate,” “aspartame,” “tyramine,” “phenylethylamine,” “dietary

nitrates,” “nitrosamines,” “noise,” “weather,” “air pollutants,” “hypoglycemia,” “hypoxia,” “infection,” “estrogen,” “cir-

cadian,” “sleep deprivation,” “information processing,” “psychosocial stress,” or “nitroglycerin and tolerance.” “Fla-

vonoids” was crossed with “prooxidant.” The reference lists of the resulting articles were examined for further relevant

studies. The focus was on empirical studies, in vitro and of animals, of individual triggers, indicating whether and/or by

what mechanism they can generate oxidative stress.

Results.—In all cases except pericranial pain, common migraine triggers are capable of generating oxidative stress.

Depending on the trigger, mechanisms include a high rate of energy production by the mitochondria, toxicity or altered

membrane properties of the mitochondria, calcium overload and excitotoxicity, neuroinflammation and activation of micro-

glia, and activation of neuronal nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. For some triggers, oxi-

dants also arise as a byproduct of monoamine oxidase or cytochrome P450 processing, or from uncoupling of nitric oxide

synthase.

Conclusions.—Oxidative stress is a plausible unifying principle behind the types of migraine triggers encountered in clini-

cal practice. The possible implications for prevention and for understanding the nature of the migraine attack are discussed.
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In clinical experience and patient report, acute

migraine attacks are precipitated by a wide range

of factors1,2 – behavioral (eg, stress, mental over-

work, irregular sleep), environmental (eg, noise,

odors), dietary (eg, alcohol, nitrates), and pharma-

cological (especially nitroglycerin). On a practical

level, identifying trigger factors may help in treat-

ment3 by preventing some migraine attacks, impart-

ing a sense of control to the patient, and providing

advanced warning that allows for early use of acute

medication.4–6

On a theoretical level, triggers raise intriguing

questions about the nature of migraines. Clinically,
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triggers seem to summate, with a migraine resulting

when a threshold is breached.7,8 In the laboratory,

isolated triggers tend to have less effect than expo-

sure to several triggers in succession.9 This implies

that triggers are converging on a common pathway,

but the mechanism by which, for example, mental

effort, hot dogs, diesel fumes, psychosocial stress,

and aged cheese interact calls for explanation.

One approach to the theory of triggers arises

from the pathophysiology of migraine. Triggers are

understood by their capacity to constrict or dilate

blood vessels, directly irritate peripheral nocicep-

tors, or activate a hyperexcitable cortex, either

directly, or by interacting with modulatory seroto-

nergic and noradrenergic brainstem nuclei.10–15

A second approach, more teleological, was

given by Blau,16 who noted that migraine triggers

tend to be exposures that in higher amounts would

damage the brain – hypoxia, hypoglycemia, alcohol,

and environmental extremes (eg, of heat or cold)

being prime examples. This is consistent with

Loder’s observation that the high prevalence of

migraines implies that they, or the genes that

underlie them, confer an evolutionary advantage.17

How this would extend to noise or mental effort,

however, is less clear. Moreover, the physiological

pathways by which potential harm generates a

migraine require explication.

As noted by others,18 the recent discovery of

the TRPA1 ion channel in nociceptors suggests one

possible explanation. In animals, calcitonin gene-

related peptide (CGRP) can be released from dural

afferents, promoting neurogenic inflammation, pain

sensitivity, and behavioral evidence of a migraine,

by agonists of the TRPA1 channel.18 Thus, Dussor

et al note that a number of irritants well known to

be migraine triggers (eg, formaldehyde19) are in

fact activators of the TRPA1 channel.20

Particularly important for our purposes is that

the TRPA1 channel is specifically activated by oxi-

dative and nitrosative stress.21 A mechanism for

sensing such conditions would surely have adaptive

significance, as the brain is uniquely susceptible to

oxidative damage.22 Long-term exposure to oxida-

tive stress has been suspected of playing a causal

role in a range of brain pathologies.23 The function

of the TRPA1 channel raises the possibility that

migraine triggers might have in common that they

induce oxidative stress in the brain, as suggested by

Benemei et al.18

Despite this conceptual advance, there has not

yet been a comprehensive consideration of the

types of migraine triggers found in clinical practice

in relation to oxidative stress. In what follows, we

will briefly review the main sources of oxidative

stress in the brain and then consider how these

sources are affected by the various migraine trig-

gers, drawing on in vitro and animal data.

Oxidative Stress.—By losing an electron or a

hydrogen atom, a molecule is oxidized and becomes

capable of oxidizing the molecules it encounters.

Examples of oxidants are free radicals such as per-

oxynitrite (ONOO•), the peroxyl radical (ROO•),

the hydroxyl radical (OH•), and the superoxide

anion (•O2
2 ). There are also nonradical oxidants,

those that do not have charges, such as hydrogen

peroxide (H2O2) and hypochlorous acid (HOCl;

bleach).

Certain oxidants (eg, H2O2), in controlled

amounts, are physiologic and have important signal-

ing functions within the cell.24,25 However, when

oxidants are produced in excess or when the antiox-

idant defenses that regulate them are compromised,

the result is oxidative stress, a condition in which

biomolecules such as DNA, membrane lipids,

enzymes, and structural proteins can be damaged

through oxidation to an extent that exceeds repair

capacity.26 Oxidative stress is thought to contribute

to a wide range of diseases.25

Sources of Oxidants.—There are three broad

endogenous sources of oxidants in the brain: (1)

Mitochondria. Based on animal data, between 0.1%

and 4% of electrons ordinarily leak from mitochon-

drial complexes I, III, and possibly II, generating

superoxide anions.27–29 Impediments to the smooth

flow of electrons through the respiratory chain can

increase their leakage and reaction with oxygen to

form superoxide. Thus, damage to the structure of

mitochondria, accumulated mutations of mitochon-

drial DNA, and mitochondrial toxins such as rote-

none and cyanide, lead to increased formation of

superoxide.30,31 (2) NADPH oxidase. Oxidative
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stress plays a key role in host defense, particularly

the bactericidal function of white blood cells.32 The

superoxide radical is produced by the NADPH oxi-

dase (NOX) enzymes and converted into hydrogen

peroxide in macrophages and hypochlorous acid in

neutrophils.32 In the brain, one form of NOX

enzyme, NOX2, is found on neurons, astrocytes,

and microglia,33 where it is activated by bacteria,

toxins, and other threats.32 (3) Other enzymes. For

certain enzymes, oxidants are a byproduct of the

reactions they catalyze. A key example in the brain

is monoamine oxidase (MAO), whose role is to

metabolize monoamines such as dopamine, norepi-

nephrine, and serotonin, but which produces hydro-

gen peroxide in the course of the reaction.34

Certain cytochrome P450 enzyme systems that

metabolize xenobiotics and drugs also produce oxi-

dants as a byproduct.35

Antioxidant Defenses.—Oxidants are deactivated,

that is, reduced, by certain enzymes and by nonen-

zymatic antioxidants. Major examples of antioxi-

dant enzymes are superoxide dismutase, catalase,

glutathione peroxidase, and peroxyredoxins. Exam-

ples of nonenzymatic antioxidants are glutathione

and ubiquinone (coenzyme Q10), both of them

endogenously generated and, solely from the diet,

ascorbic acid, alpha-tocopherol, and beta caro-

tene.36 In particular, glutathione is the main nonen-

zymatic antioxidant found in cells.22,37 It is easily

oxidized, protecting protein thiol (R-SH) groups

from oxidation. It is regenerated in cells by the glu-

tathione reductase enzyme. For oxidative damage

that has already occurred, the body has a number

of compensatory and repair processes. For example,

an enzyme, apurinic endonuclease (Ape1), activates

the base excision repair pathway, correcting com-

mon types of oxidative damage to DNA.38

Migraines and Oxidative Stress.—Migraine may

be associated with increased vulnerability to oxida-

tive stress. Some migraineurs, particularly those

with white matter hyperintensities on MRI and/or

who have a family history of migraine, show

decreased activity of catalase in the serum, meas-

ured interictally,39,40 and thus may have difficulty

detoxifying hydrogen peroxide. Lower activity of

superoxide dismutase has been found in the eryth-

rocytes41 and platelets42 in migraine, as has a lower

activity of glutathione peroxidase in erythrocytes,41

and lower total antioxidant capacity and nonoxi-

dized thiol concentration in serum.43

Migraine Triggers.—Thus, oxidants arise endoge-

nously in the brain from a number of sources. In

excess amounts, they are potentially harmful. We

have seen that the brain has ion channels that can

detect oxidative stress, triggering neurogenic infl-

ammation. It is plausible that migraine triggers

have in common a capacity to increase oxidative

stress. In what follows, we will consider this possi-

bility for a range of migraine triggers.

Here, we will use the term “trigger” to mean an

external or internal exposure that increases the prob-

ability of a subsequent migraine attack. Because the

association is probabilistic and additive, “potentiating

factor” is a more accurate description. However, we

will retain the term “trigger” due to its simplicity

and nearly universal use in the migraine literature.

METHODS

A Medline search was conducted by the author

crossing the terms “oxidative stress” and “brain”

with “alcohol,” “dehydration,” “water deprivation,”

“monosodium glutamate,” “aspartame,” “tyramine,”

“phenylethylamine,” “dietary nitrates,” “noise,” “wea-

ther,” “hypoglycemia,” “hypoxia,” “infection,”

“estrogen,” “circadian,” “information processing,”

“psychosocial stress,” or “nitroglycerin and tolerance.”

The reference lists of the resulting articles were exam-

ined for further relevant studies. The search was

restricted to English language articles published

between 1990 and 2014. Studies were included in the

review if they examined the exposure as a single inter-

vention and reported empirical data on whether and/or

by what mechanisms the exposure induced oxidative

stress. In vivo studies were selected when available.

Studies were preferred if they reported on exposures

plausible for daily life (eg, studies of acoustic trauma

from blast injuries were excluded for “noise”). In seven

cases, no relevant articles were found and the searches

were modified as follows: “tyramine and oxidative and

brain,” “information processing and oxidative stress,”

“nitroglycerin and tolerance and oxidative stress,”

“monosodium glutamate and neurotoxicity,” “sleep
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deprivation and oxidative stress and brain,” “air pol-

lutants and oxidative stress and brain,” and

“nitrosamines and oxidative stress and brain.” For fla-

vonoids, the search “flavonoids and prooxidant” was

used to exclude the very large number of studies

examining the antioxidant effects of flavonoids.

Because noninvasive measures of oxidative stress in a

living brain are not yet available, the studies were

generally of in vitro or animal data.

RESULTS

The number of search results vs retained stud-

ies were: dehydration (4/1), water deprivation (5/1),

aspartame (7/4), phenylethylamine (7/2), nitros-

amines (7/1), noise (44/1), hypoglycemia (52/2), psy-

chosocial stress (12/1) and, for the modified

searches, tyramine (27/5), monosodium glutamate

(49/1), air pollutants (42/2), sleep deprivation (42/2),

and information processing (38/1). For hypoxia (897

results), alcohol (296), infection (244), estrogen

(135), flavonoids (112), and nitroglycerin (72),

numerous studies were available reporting the same

mechanisms. For these triggers, between 1 and 4

illustrative papers were retained.

Dietary Triggers

In 1674, Thomas Willis cited “errata in victu,”

errors in diet, as eliciting factors in cephalalgia (Willis,

1674, cited in Living, 1873).44 In modern times, nutri-

tional factors consistently turn up in migraineurs’

reports, although the proportion of patients with prom-

inent alimentary triggers may be small.1,4,45 Several

dietary components in particular have been suspected:

Alcohol.—Long-term exposure to high doses of

alcohol, as seen in chronic alcoholics, leads to loss

of frontal lobe volume, diffuse white matter atro-

phy, and mild dementia.46 Even adolescents and

young adults with alcohol use disorders show im-

pairments in executive functioning that resemble

premature aging, and neuroimaging studies suggest

loss of volume of prefrontal cortex and the hippo-

campus.47 In animal studies, a single day of alcohol

consumption, analogous to a binge, is sufficient to

cause neural degeneration and reactive gliosis.48

The brain damage in alcohol is thought to be medi-

ated by oxidative stress from several sources.

Alcohol is metabolized in the body in part by

cytochrome P450-2E1 (CYP2E1) and in part by

alcohol dehydrogenase. Superoxide and hydrogen

peroxide are byproducts of CYP2E1 function-

ing.35,49 Some of this enzyme is located within the

mitochondria, where oxidative damage could pro-

mote further oxidant production through the leak-

age of electrons from complexes I and III.50

Moreover, CYP2E1 is inducible – exposure to a

substrate such as ethanol prevents its proteosomal

degradation, causing an increase in the amount of

the enzyme within the cell.35,50

For both CYP2E1 and alcohol dehydrogenase,

a metabolite of alcohol is acetaldehyde, a toxin that

activates inducible nitric oxide synthase, xanthine

oxidase, and neuronal NADPH, causing further

production of oxidants.49 In addition, high doses of

alcohol activate microglia, markedly increasing the

production of reactive oxygen species.51

The fluidity of mitochondrial membranes is

affected acutely by ethanol, leading to altered

enzyme function, leakage of electrons, and increased

oxidant production.52 This in turn is thought to oxi-

dize the membranes further, causing increased oxi-

dant production in a vicious cycle.53

Moreover, as a diuretic, alcohol induces a com-

pensatory release of arginine vasopressin.54,55 As

will be discussed further when we consider water

deprivation, vasopressin increases superoxide re-

lease by the vasculature.56

Alcohol is often cited by patients as among the

most prominent dietary triggers.45,57 It is plausible

that this reflects the numerous ways in which alco-

hol generates potentially toxic levels of oxidative

stress in the brain.

Water Deprivation.—Water deprivation is sup-

ported as a migraine trigger by retrospective report58

and case studies.59,60 In mice, dehydration increases

the concentration of arginine vasopressin in the

plasma, through increased production by the hypo-

thalamus and because plasma volume is lower.56

Vasopressin, in turn, releases endothelin which, acting

through the endothelin A receptor, raises the produc-

tion of superoxide anion by the vasculature. The

resulting oxidative stress is marked enough to impair

cerebrovascular reactivity and autoregulation.56
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Monosodium Glutamate.—Some support for a

general monosodium glutamate (MSG) syndrome,

including headache, muscle tightness, numbness,

weakness, and flushing, is found in two double-blind,

placebo-controlled trials.61,62 Both trials used high

doses (up to 5 g) on an empty stomach in people

self-identified as sensitive to MSG. In both cases,

the presence of symptoms was dose-related but the

reproducibility of individual symptoms was low.63

MSG that reaches general circulation appears

to raise brain levels of glutamate.64 There, it stimu-

lates ionotropic and metabotropic glutamate recep-

tors on neurons, causing calcium influx. This

increases the neurons’ rates of oxidative phospho-

rylation to provide the energy for restoring ion

homeostasis, which in turn raises oxidant produc-

tion. There can also be uptake of calcium by the

mitochondria, causing transient opening of perme-

ability transition pores and consequent further

release of superoxide anion.64

When glutamatergic stimulation is at normal

physiological concentrations, the resulting oxidative

reactions likely play a role in synaptic plasticity,

learning, and memory, and the collateral DNA

damage is readily repaired.65 At supraphysiologic

concentrations, however, such as when the gluta-

mate comes from an exogenous source, the exces-

sive signaling and calcium influx leads to

excitotoxicity: damage, necrosis, and/or apoptosis

from oxidative stress.64

In most cases, it seems doubtful that MSG

added to food significantly raises the levels in gen-

eral circulation. In Western diets, approximately

10 g of glutamate is consumed daily as a normal

constituent of protein and added MSG (�0.6 – 2.3 g/

day) is within the range of dietary variation. More-

over, of ingested glutamate, 95% is used by the

enterocytes lining the intestines as a source of

energy and for synthesis of glutathione.63 However,

normal dietary levels might not be benign to sensi-

tive individuals. Foods naturally high in free gluta-

mate, such as citrus and processed meats, figure high

in the list of reported migraine triggers.66

Aspartame.—Aspartame consists of two amino

acids, phenylalanine and aspartic acid, bound

together as a methyl ester. Because it is 180 times

sweeter than sucrose, amounts too small to contrib-

ute calories can be used to sweeten foods and bev-

erages.67 Some68,69 but not all70 double-blind,

placebo-controlled trials have found depression and

subtle cognitive impairments with high intake over

1–2 weeks, implying an effect on the brain.

One avenue by which aspartame might have

neural effects is through the methyl ester linkage,

which is metabolized by the body into methanol.

The methanol, in turn, is metabolized by the alco-

hol dehydrogenase system into formaldehyde and

then to formate.67 Methanol, formaldehyde, and

formate are all neurotoxins, as is well known from

the blindness (from retinal and optic nerve damage)

in people consuming methanol during Prohibition.71

Formate inhibits mitochondrial complex III, causing

release of superoxide, peroxyl, and hydroxyl radi-

cals.72 Methanol freely passes through the blood-

brain barrier.

Further, a portion of the methanol is metabo-

lized through an alternative, microsomal oxidizing

pathway that creates as a byproduct, free radicals.72

Moreover, in the liver and presumably the brain,

enzymatic detoxification of methanol consumes glu-

tathione, directly impairing antioxidant defenses.72,73

Thus, in rats fed high doses of aspartame there are

signs of oxidative stress and a compensatory increase

in antioxidant enzymes in the cortex and other brain

regions.22,74

Another source of neural effects may be excito-

toxicity: Aspartame is metabolized into phenylala-

nine (50%) and aspartic acid (40%), as well as

methanol (10%).75 Brain levels of aspartic acid

increase acutely after aspartame ingestion.67 Aspar-

tic acid is a precursor of glutamate and also a direct

agonist at NMDA receptors.67 This presumably

causes enhanced glutamatergic signaling and excito-

toxicity.67 A third mechanism, seen over a 2-week

period, is activation of microglia with resulting pro-

duction of nitric oxide and other inflammatory

mediators.76 The nitric oxide, in turn, would lead to

oxidative stress via the peroxynitrite radical.

Consistent with this evidence of oxidative stress

and impact on the brain, some77,78 but not all79

double-blind, placebo-controlled trials have sug-

gested a migraine triggering effect of aspartame.
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Tyramine.—Tyramine is found in red wine and

aged cheese. It first came under suspicion as a

migraine trigger from the headaches reported by

people who ingested these foods while taking

MAO inhibitors, and from evidence that male

migraineurs may have constitutively lower platelet

MAO activity.80 Migraine without aura is associ-

ated with higher plasma levels of octopamine and

synephrine – metabolites of tyramine – suggesting

that baseline levels of tyramine may be elevated.81

Tyramine has been supported as a migraine trigger

in several double-blind, placebo-controlled trials,

nearly all from Hanington’s laboratories,82,83 but

there have been negative results as well.84 Only

about 5% of migraineurs are thought to be sensi-

tive to tyramine.85

In the brain, tyramine is endogenously pro-

duced, has receptors (trace amine-associated recep-

tors),86 and seems to function by modulating the

effects of dopamine.87 In particular, tyramine is

indirectly sympathomimetic and both facilitates

dopamine release and interferes with its reuptake.88

Tyramine is degraded by MAO, types A and B,

found on the outside surface of the outer mem-

brane of mitochondria. A byproduct of this reaction

is hydrogen peroxide87,89 in amounts far exceeding

the background production by mitochondrial respi-

ration.90 Although MAO metabolizes other mono-

amines as well, such as dopamine and serotonin, at

least in vitro the amount of hydrogen peroxide gen-

erated from tyramine is far greater than from dopa-

mine or serotonin.91 Tyramine, in fact, seems to be

a source of oxidative damage to mitochondrial

DNA.92

A caveat is that under normal circumstances,

tyramine does not cross the blood-brain barrier.87

Thus, if tyramine sensitivity is centrally mediated, it

would require a disruption of the blood-brain bar-

rier, such as from an inflammatory process, in die-

tary migraineurs. In fact, there is some indication

that the blood-brain barrier is compromised interic-

tally in migraine93–95 although the evidence is

inconsistent and of uncertain interpretation.96,97

Phenylethylamine.—b-phenylethylamine, a bio-

genic amine derived from phenylalanine, is a sus-

pected active ingredient in such possible migraine

trigger foods as chocolate, wine, and some

cheeses.98 Also, phenylethylamine is a minor

metabolite of phenylalanine, of which aspartame is

a significant source.22 Phenylethylamine functions

as an excitatory neuromodulator, and with acute

administration it potentiates dopamine release and

increases motor behavior.98 It is also a norepineph-

rine and dopamine reuptake inhibitor.99

With long-term administration or at high doses,

however, it inhibits complex 1 of the mitochondria

in the dopamine-containing cells of the substantia

nigra, leading to release of hydroxyl radicals, oxida-

tive stress-mediated damage, and Parkinsonian

symptoms in laboratory animals.98,100 In fact, at

high doses, b-phenylethylamine behaves similarly to

rotenone and MPTP, used as neurotoxic models of

Parkinson disease.98

Nonetheless, b-phenylethylamine has not been

established with certainty as a migraine trigger.

Other constituents, particularly the flavonoids in

chocolate and wine may be the true culprit.101,102

And the flavonoid content of chocolate and wine is

generally considered anti-inflammatory. However,

there are circumstances in which flavonoids may

also generate oxidative stress, as discussed in the

next section.

Flavonoids.—The case for flavonoids as a

migraine trigger is circumstantial: They are found

in fairly high quantity in the likely trigger foods red

wine and citrus, they inhibit an enzyme (phenolsul-

photransferase) that degrades catecholamines, and

one class in particular, isoflavones, has weak estro-

genic properties.4

Although pure flavonoids, without a glucose

moiety, are clearly antioxidants in vitro, the func-

tioning of flavonoids in the body, where they are

subject to extensive metabolic processing, is not

known with certainty.103 Indeed, it may be through

pro-oxidant properties that flavonoids are able to

induce cell-cycle arrest and apoptosis in cancer

cells.104,105 Their antioxidant effects in vivo may be

indirect, by inciting increased expression of antioxi-

dant and detoxifying enzymes.24

What does seem clear is that flavonoids func-

tion as pro-oxidants under three circumstances:

high concentration,103 oxidation by intracellular
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enzymes such as myeloperoxidase,106 and when in

contact with transition metals such as iron and cop-

per.107 Ordinarily, iron and copper are bound to

proteins (eg, hemoglobin, ferritin for iron, cerulo-

plasmin for copper) that prevent this effect but free

iron or copper may exist in the body after injury or

in disease states.103

In fact, increased nonheme iron has been found

in the periaqueductal gray,108 red nucleus, putamen,

and globus pallidus109,110 in migraine. In theory, oxi-

dative damage from repeated activation, hyperoxia,

and perhaps nociceptive input itself may cause the

buildup of iron and underlie the transition from epi-

sodic to chronic migraine.111 In the event that some

of this increased iron is free, that is, not sequestered

in ferritin or by microglia, then it could catalyze fla-

vonoids locally into pro-oxidant derivatives.

Nitrates.—Dietary nitrites, found in cured and

processed meats, first emerged as a migraine trigger

in a 1972 single-blind case study,112 later confirmed

in a small double-blind, placebo-controlled trial.113

There has been only occasional confirmation since

then, for example,114 perhaps because the level of

nitrate added to meats has declined markedly since

1972.115

The mitochondria, and certain enzymes (eg,

xanthine oxidase) and proteins (eg, myoglobin, an

oxygen-binding molecule in the muscles) are all

capable of transforming nitrite into nitric oxide.

These pathways function mostly when oxygen levels

are low, and serve to dilate blood vessels, slow

metabolism, and prevent injury by free radicals.116

Thus, dietary and endogenous nitrite plays a key

physiological role and may function as an antioxi-

dant. However, under certain conditions xanthine

oxidase produces superoxide,117 which transforms

nitric oxide into the peroxynitrite radical, a source

of oxidative stress.118

Alternatively, nitrates – which are abundant

also in vegetables and thus the Mediterranean diet

– might be innocent. Some other component of

processed meats might be to blame, such as nitros-

amines, a reaction product of nitrates with protein,

which have been linked to brain cancer in animal

and some119 but not all120 epidemiological studies.

In vitro, nitrosamines cause oxidative stress, includ-

ing increased levels of oxidative DNA damage and

4-hydroxynonenal).121 Because nitrosamines seem

to cross the blood-brain barrier122 it is possible this

same effect occurs in vivo.

Environmental

Noise.—Exposure to noise seems to increase the

probability of a migraine the following day.123 It is

cited by patients as a trigger in retrospective sur-

veys45 and has been supported as a headache trig-

ger in a controlled laboratory study.124

In young mice, moderate levels of noise (80 dB

SPL, 2 hours per day for 6 weeks) leads to deficits

in spatial learning and avoidance conditioning. The

extent of these deficits is correlated with increased

oxidative stress in the hippocampus, auditory cor-

tex, and inferior colliculus.125 How moderate levels

of noise exposure produce such downstream effects

is not clear, although presumably excitotoxicity is a

reasonable hypothesis.

Weather and Pollution.—Certain broad weather

patterns may increase or decrease the probability

of a migraine.123 Among specific meteorological

variables, a wind speed greater than 38 km/hour

(�24 miles/hour) has received particular support.126

The explanation has not been fully worked out but

wind speed may be a proxy for the amount of dust

the air has picked up (particulate matter with diam-

eter >2.5 lm).127 Air pollution, and particulate

matter specifically, increases the probability of hos-

pitalization for headache.128,129

Epidemiological evidence links air pollution to

neurotoxicity. For example, in Valcamonica, Italy,

where there is a high level of ferromanganese pol-

lution from local industry, ostensibly healthy ado-

lescents show tremors and subtle deficits in motor

dexterity and coordination, whose intensity is corre-

lated with the degree of manganese exposure.130 In

highly polluted areas of Mexico City, auditory

brainstem nuclei in children show aggregated alpha

synuclein (the amyloid involved in Parkinson’s dis-

ease and dementia with Lewy bodies) and markers

of oxidative damage to proteins and DNA.131

The mechanism linking exposure to pollutants

with neurotoxicity is not certain. However, the

olfactory nerve consists of axonal projections from
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the nasal epithelium to the olfactory bulb. Particu-

lates can be transported along the axons, bypassing

the blood-brain barrier, and cross the synaptic cleft

into the brain parenchyma.132 Based on in vitro evi-

dence, the pollutants may activate microglial via

toll-like receptor signaling, inducing an inflamma-

tory response and oxidative stress.133 Thus, the neu-

rotoxicity of inhaled particulate matter (collected

from a public park in Tuxedo, NY, and concen-

trated) is exacerbated in apolipoprotein E null rats,

which are systemically prone to oxidative stress.134

Physiological

Hypoglycemia.—Hypoglycemia is regarded as a

migraine trigger based on case reports, for exam-

ple,135 an experimental study,136 the ability of fast-

ing to produce a headache,137–139 and triggering of

migraines by glucose tolerance testing.140 Migraine

may occur only after blood glucose levels are renor-

malized.135 In the glucose tolerance test, migraines

typically occur 1 to 4 hours after glucose ingestion.

Extreme hypoglycemia leads to coma and

death, while repeated severe episodes in type I dia-

betic patients are associated with atrophy of the

cortex, especially the occipital and parietal lobes,

hippocampus, and basal ganglia.141,142 Animal stud-

ies suggest that very severe hypoglycemia in the

brain is, initially, an excitotoxic state due to exces-

sive glutamate release, leading to mitochondrial

dysfunction and oxidative stress.143 Far higher lev-

els of oxidative stress follow the reintroduction of

glucose, which activates nitric oxide synthase and

neuronal NADPH oxidase and causes free radical-

mediated death of neurons.144 NADPH oxidase

requires a steady supply of NADPH, which cannot

be regenerated until glucose is restored.144

Hypoxia.—Hypoxia is a suspected migraine trig-

ger based on the similarity of migraine to acute

mountain sickness, increased risk of migraine from

living at high altitudes, and a tendency found in a

controlled trial.145

In animal models, intermittent hypoxia causes

oxidative stress via mitochondrial dysfunction (the

mitochondria cannot function efficiently without an

adequate supply of substrates) and via NADPH

oxidase.146 In addition, in hypoxic cells, the xan-

thine oxidoreductase enzyme, which ordinarily

helps dispose of purines, is cleaved to form xan-

thine oxidase.117 Xanthine oxidase may help

increase blood flow to ischemic tissue by producing

nitric oxide through the reduction of nitrites and

nitrates. However, depending on the microenviron-

ment, xanthine oxidase also produces superoxide.117

Nitric oxide, of course, is usually produced by

the nitric oxide synthases, using L-arginine and

molecular oxygen as substrates and NADPH and

tetrahydrobiopterin as cofactors. When the supply

of oxygen is insufficient, however, the nitric oxide

synthases become “uncoupled,” producing superox-

ide instead of nitric oxide.147

Infection.—A sick day not due to headache may

increase the duration of a subsequent headache,123

suggesting a common pathway. In mice, systemic

exposure to an inflammatory stimulus, bacterial cell

wall lipopolysaccharides, can cause induction of

NADPH oxidase lasting for 10 months or longer.148

Estrogen.—The relationship between estrogen

and migraines is complex. That women have an

approximately threefold greater risk of migraines,

beginning at menarche, suggests that female sex hor-

mones contribute to migraines.149,150 In an animal

model of induced neurogenic inflammation, estradiol

intensifies vasodilation, CGRP expression, and

migraine-like behavior.151 However, for immediate

triggering, the case is strongest for estrogen with-

drawal, that is, the declining estrogen level seen

perimenstrually and at the time of ovulation.150

The phenolic structure of 17b-estradiol confers

to it antioxidant properties in vitro, particularly for

scavenging hydrogen peroxide152 but it is not clear

that this is relevant in vivo.153 Markers of oxidative

stress in the plasma tend to peak during the late

follicular and early luteal phases of the menstrual

cycle,154,155 perhaps because of the rapid prolifera-

tion of follicular or endometrial tissue,154 and to

fall during menstruation.

In the central nervous system, however, estro-

gen facilitates a number of protective processes. It

limits oxidative damage by increasing the expres-

sion of Cu, Zn-superoxide dismutase,156 and helps

reverse extant damage by upregulating repair en-

zymes thioredoxin157 and Ape1.38 Estradiol also
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inhibits apoptosis by increasing the expression of

Bcl-238,158 and reduces neuroinflammation.159 The

reduced activation of microglia, in turn, should

lower brain oxidative stress.

In vitro, estradiol prevents glutamate toxicity

by downregulating the expression of AMPA- and

NMDA-type glutamate receptors.160 In animals,

estradiol reduces infarct size following middle cere-

bral artery occlusion.161

On the whole, then, estrogen appears to be neu-

roprotective, with antioxidant, anti-inflammatory,

antiexcitotoxic, and antiapoptotic actions in vivo. It

is not known, however, whether the short-term phys-

iological withdrawal of estrogen during the men-

strual cycle is enough to reduce this protection and

render cells vulnerable to oxidative stress.

Behavioral

Sleep Cycle.—John R. Graham included “sleeping

late” among his “errors of living for migraineurs to

heed,”162 and “sleeping late,” “oversleeping,” “sleep

disturbance,” and “change in sleeping habits or

sleep” figure prominently among the triggers nomi-

nated by patients.1,2,45 Of course, the maintenance of

stable biological rhythms is helpful for managing

other conditions that involve the brain, such as bipo-

lar disorder and dementia.163,164

Disruptions in the circadian rhythm by exposing

animals to shifts in the light-dark cycle interfere

with learning and with the retention and retrieval of

memories.165 Hippocampal functions are most read-

ily affected but with increasing circadian disruption,

cognition that depends on the prefrontal cortex or

dorsal striatum is affected as well.166 Anatomically,

there is evidence for reduced neurogenesis.167,168

Corticosterone levels may be directly elevated or the

circadian disruption may potentiate the corticoster-

one response to laboratory stresses.169

Approximately, 10% of all gene transcription

in the mouse shows circadian oscillation, suggesting

regulation by clock genes.170 In particular, the tran-

scription of major antioxidant enzymes, including

superoxide dismutase, catalase, glutathione peroxi-

dase, peroxiredoxins, and sestrins, appears to be

controlled by circadian clock genes.171

Sleep deprivation is associated with a depletion

of reduced glutathione in the brain.172 As we have

seen, glutathione is the body’s main nonenzymatic

antioxidant and is utilized by the antioxidant enzyme

glutathione peroxidase, which detoxifies the hydroxyl

radical. In rats, cognitive deficits from sleep depriva-

tion are prevented by antioxidants,173 further tying

the harm of sleep deprivation to oxidative stress.

Mental Overwork.—Living174 noted that among

migraine triggers, “and perhaps more certainly

influential than any of them” were “mental emotion

and excessive brain-work.”

Whether triggering by excessive mental work

can be explained by oxidative stress is not clear

because little is known about whether information

processing influences redox state. However, the

neuron-like structures of the retina can be damaged

by high intensity light exposure (phototoxicity)175,176

as can the cochlea and upstream cortical structures

by excessive noise (acoustic trauma);125,177 this dam-

age is specifically through oxidative mechanisms.

Similarly, painful stimulation of the limbs in rats

increases lipid peroxidation in sensorimotor cortex

for days afterwards.178 Excessive release of gluta-

mate (excitotoxicity) and the catabolism of dopa-

mine179 are sources of oxidative stress.

Moreover, information processing by the cortex

is associated with augmented power and with syn-

chronization across cortical regions in the high fre-

quency bands of the electroencephalogram (EEG),

particularly the high gamma range (60–200 Hz).180

Lower gamma band activity (30–60 Hz, especially

around 40 Hz) is thought to reflect perceptual bind-

ing – the integration of stimulus features into a coher-

ent percept or gestalt, integration across different

sensory modalities, and the maintenance of items in

working memory.181 Higher gamma band activity is

thought to reflect such higher functions as selective

attention and motor planning,181 and perhaps infor-

mation processing in general.180 Gamma band activ-

ity may be more intense, with stronger amplitude and

decreased inhibition, in migraineurs, at least in

response to visual stimulation.182

Physically, the correlates of power augmenta-

tion at higher EEG frequencies are higher neuronal

firing rates and greater utilization of glucose and
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oxygen.180,183 In particular, gamma oscillations seem

to reflect the very rapid, synchronized firing of a cer-

tain class of GABAergic, inhibitory interneurons,

parvalbumin-expressing basket cells. Because this fir-

ing is extremely rapid, it entails enormous energy

demands by ion pumps to restore the neuron to the

resting state.184 The basket cells are replete with

mitochondria that appear to be functioning at full

capacity during gamma oscillations.184

A very high metabolic rate may cause oxidative

stress. We have seen that ordinarily, between 0.1%

and 4% of electrons leak from mitochondrial com-

plexes I and III, generating superoxide anions.29

Thus, the amount of superoxide produced appears

to be a linear function of metabolic rate. Moreover,

with high firing rates, there is potential for transient

overload of calcium ions in the neuron, increasing

oxidant production further.185 Thus, fast-spiking

interneurons may be key sources of oxidative stress,

contributing to aging and brain pathology.185

Stress.—In patient reports, stress is generally

among the most important migraine triggers.45,186

Even this may be an underestimate, as stress may

have a 3- or 4-day delayed effect,187 making its trig-

gering less observable. It has been confirmed as a

trigger in laboratory studies.188 Although there are

a large number of major life stresses, a common

unifying characteristic is social loss.

In rats, being raised in isolation leads to cognitive

(impaired sensorimotor gating) and behavioral defi-

cits, as well as a depletion of glutathione in the stria-

tum and cortex.189 Psychosocial stress seems to

activate the same cellular defense processes as infec-

tion or toxins, perhaps because stress is a warning of

impending injury. In prefrontal cortex and the

nucleus accumbens, psychosocial stress in rats causes

a tremendous increase in NOX2 expression and

markers of oxidative stress.33,190 Of note, this effect

appears to trigger the signaling pathway for hypoxia,

that is, by hypoxia inducible factor-1.191 Thus, the

idea that social stresses are encoded, not by novel

structures but by novel ways of activating evolutio-

narily preexisting structures192 appears true on a

molecular as well as a neural systems level.

Daily Hassles.—An analog to the minor but

repeated stresses of daily life are perhaps the stud-

ies in which primates must repeatedly establish,

challenge, or defend their place in the status hierar-

chy. This type of stress is not benign but associated

with impairments in neurogenesis and dendritic

branching and growth in the CA3 region of the hip-

pocampus.193,194 These types of changes are gener-

ally associated with oxidative stress.33

Daily hassles are supported as a migraine trig-

ger in prospective diary195 and single-subject196

studies. Both the amount and temporal patterning

of stress may be key.197

Pharmacological

Nitroglycerin.—Nitroglycerin, a nitric oxide

releaser, is known to cause an immediate headache

in susceptible individuals and, in migraineurs, a

migraine after about 5 hours.198 Nitric oxide is prob-

ably an antioxidant in vivo.199 Nitroglycerin, how-

ever, also causes the production of superoxide by the

aldehyde dehydrogenase enzyme and by vascular

NADPH oxidase.200,201 Moreover, nitric oxide reacts

with superoxide approximately three times faster

than does the detoxifying enzyme superoxide dismu-

tase (reaction rate 6.7 3 109 M21s21 vs 2 3 109

M21s21),33,118 forming the highly reactive peroxyni-

trite radical.202

The main findings in the Results section are

summarized in the Table.

DISCUSSION

Thus, migraine triggers encountered in clinical

practice are capable of generating oxidative stress.

Mechanisms include a high rate of energy production

by the mitochondria, toxicity or altered membrane

properties of the mitochondria, calcium overload and

excitotoxicity, neuroinflammation and activation of

microglia, and activation of neuronal NADPH oxi-

dase. For some triggers, oxidants also arise as a

byproduct of MAO or cytochrome P450 processing,

or from uncoupling of nitric oxide synthase. In turn,

oxidative stress, transduced by the TRPA1 ion chan-

nel on C fibers, can initiate CGRP release and the

neurogenic inflammation of migraine.

As a response to oxidative stress, migraines

could confer a survival advantage, as suggested by

Loder.17 The brain is uniquely vulnerable to
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oxidative damage because of its high metabolic rate,

the polyunsaturated (easily oxidized) nature of neu-

ronal cell membranes, and the presence of iron and

copper ions, which can catalyze the formation of free

radicals. Antioxidant resources and cellular repair

capacity, requiring energy, are limited in the brain.22

Further, apoptosis as a defense mechanism – simply

deleting through programed death cells that have

become too badly damaged203 – is not a good option

in the brain, as neurons generally cannot be replaced.

We have seen that migraineurs may be particularly

susceptible to oxidative stress because of lower antioxi-

dant defenses. Moreover, oxidative stress may help

account for the relationship between cortical spreading

depression (CSD) and the subsequent attack in

migraine with aura. Pro-oxidants potentiate and

antioxidants prevent CSD,204 suggesting a common vul-

nerability. Moreover, CSD itself causes oxidative

stress205 and in theory might thereby trigger a migraine.

Consistent with this, CSD also rapidly induces certain

antioxidant defenses – glutathione-S-transferase 5, apo-

lipoprotein E, and major prion protein precursor.206

Further, in animal studies, by inhibiting the

enzyme glutamine synthase and the glutamate

transporter on astrocytes, reactive oxygen species

may increase the concentration of glutamate, con-

tributing to an excitable brain.207

Nonetheless, the approach taken here is not

without weakness. Nearly all of the migraine triggers

we have discussed are from traditional case studies

and retrospective reports by migraineurs, subject to

misattribution, illusory correlation, and recall

bias.123,208 The determination of causality is notori-

ously difficult in naturalistic, uncontrolled observa-

tion.209 It is possible that some putative migraine

triggers are in fact nothing more than bystanders.

Yet we have seen that physiologically, these putative

triggers are far from innocent; all conform to Blau’s

dictum that in higher amounts they would damage

the brain. Moreover, if the true proximal trigger is

oxidative stress then individual triggers may be diffi-

cult to validate in the laboratory as the dose, combi-

nation with other triggers, state of antioxidant

defenses, and state of pain thresholds (which may be

raised by the novelty of being in a study) would all

moderate the result.210

A second weakness is that triggers have multi-

ple effects, of which only one, oxidative stress, has

been discussed. Thus, for example, hypoglycemia

increases plasma free fatty acids, changes neuronal

ion homeostasis, and alters levels of dopamine and

serotonin, all of which could play a role in

migraine.135 Many triggers can activate the sympa-

thetic nervous system which, in large amounts,

would threaten homeostasis.211 Yet the capacity of

oxidants to elicit neurogenic inflammation through

the TRPA1 ion channel, and the relevance of oxi-

dative stress to neuronal functioning and survival,

make this a tempting unifying principle.

The broad parsimony of the theory is also a

key weakness: In common with other theories of

migraine triggers, it does not allow us to deduce

why a particular combination of exposures would

lead to a migraine in a particular person at a partic-

ular time. The gap between theory and moment-to-

moment experience is large. A strength of the

theory is that it indicates the types of variables that

would need to be measured to bridge this gap: the

level and sources of brain oxidative stress in

response to trigger exposure.

Some triggers do not seem well explained by

this model – in particular the triggering by pericra-

nial pain such as from eye strain or myofascial

problems at the upper neck.123 It is possible that

neck pain is actually a premonitory symptom and

not a trigger.212 Alternatively, however, there is in

vitro evidence that capsaicin and H2O2 applied to

dorsal root ganglion neurons, have a multiplicative

effect in causing CGRP release.205 Thus, we might

speculate that TRPV1 channels, sensitive to inflam-

matory pain, and TRPA1 channels, sensitive to oxi-

dative stress, interact.213 In that event, pericranial

pain might function to lower the threshold of oxida-

tive stress needed to trigger a migraine.

A further weakness in the theory is that oxida-

tive stress in the brain increases with age214 while

the prevalence of migraines declines.215,216 Presum-

ably, one would need to posit that the ability to

detect oxidative stress, like perceptual acuity,

declines with age, or that the mechanisms that

transduce oxidative stress become desensitized as

basal levels rise. There is evidence, for example,

22 January 2016



that parthenolide, a component of feverfew and a

partial agonist of TRPA1, desensitizes the ion chan-

nel over time.217

Alternatively, the migraine response itself

might become impaired. The vasodilatory compo-

nent may be curtailed by endothelial dysfunction

and atherosclerosis.216 Brainstem dopaminergic cir-

cuits, and the substantia nigra in particular, have

been implicated in migraine,218 and perhaps the

decline of neurotransmission in these circuits

accounts for the improvement in migraines.219 In a

case-control study, 64% of migraineurs recalled an

improvement or resolution of migraines following

onset of Parkinson disease.220

Moreover, because trigger escape and avoid-

ance can never be perfect, we must ask why migrai-

neurs do not show progressive brain damage over

time. But perhaps they do. Chong et al report that

age-related cortical thinning is accelerated in

migraineurs.221 That this may not be an effect of

the attacks themselves is suggested by the inde-

pendence of the decline from disease duration and

migraine frequency. However, the physiological

basis of cortical thinning is poorly understood. A

second possibility is that migraines are neuroprotec-

tive, effectively countering oxidative stress, as dis-

cussed briefly below.

Conversely, viewing migraine triggers from the

perspective of oxidative stress has a number of

advantages. It is physiologically plausible via the

TRPA1 ion channel. It brings unity to a wide vari-

ety of behavioral, environmental, dietary, physio-

logical, and pharmacological exposures. It provides

an explanation for how triggers can summate.

Moreover, this perspective on triggers links to

the further simplification that a number of agents that

reduce oxidative stress seem to function as migraine

preventives, including vitamin E,222 ginkgo,223 melato-

nin,224 butterbur,225 feverfew,226,227 coenzyme Q10,228

and possibly alpha lipoic acid,229 and vitamin C

with230 or without231 pine bark extract. The efficacy

of riboflavin, too, might be indirectly due to reduced

oxidative stress:232 Riboflavin is a coenzyme for gluta-

thione reductase, an antioxidant enzyme, and in its

reduced form can directly scavenge oxygen

radicals.233

The suggestion here is that this is a class

effect,43,205 and that other antioxidants will similarly

be effective.

Consistent with this, regular moderate aerobic

exercise, which seems to increase antioxidant

reserves in the brain,234 may also attenuate the

intensity or frequency of migraines.235

Similarly, frontalis muscle tension biofeedback,

empirically supported for the prevention of

migraines,236 has been shown to reduce serum per-

oxides and raise levels of nitric oxide and superoxide

dismutase in chronic migraine.237 The mechanism is

not clear, but as a relaxation technique, it might

lower stress-related activity of NADPH oxidase.

(For migraine preventive medications, the case

is less clear: Flunarizine,238,239 propranolol,240 and

topiramate241 appear to be antioxidants, either

directly or by raising levels of antioxidant enzymes,

while valproate242 and amitriptyline243 appear to be

pro-oxidants.)

On a practical level, the idea that triggers func-

tion via oxidative stress raises the possibility that

antioxidants, taken at the time of trigger exposure,

could function as “acute preventives” or “preemptive

therapy.”232,244 There is some preliminary evidence

for this for ginkgo245 and the combination of ginger

and feverfew.246 Indeed sumatriptan, in some

respects a late-stage preemptive, scavenges superox-

ide and hydroxyl radicals in vitro247 and may reduce

levels of peroxynitrite in vivo.248 However, such a

role for antioxidants has not been established and

requires further research.

Conceptually, triggers as sources of oxidative

stress adds to the view of migraines as a defensive

response designed to limit further exposure to the

triggers. The acute environmental intolerances of

photophobia, phonophobia, and osmophobia, the

aversion to exertion and movement, and the tempo-

rary decline in mental status all fit with an adaptive

purpose of migraines.249

Further afield, it raises the possibility that

migraines might actively counter oxidative stress on a

physiological level. A number of candidate processes

can be adduced. In various tissues of the body,

CGRP reduces the expression of NADPH oxidase,250

increases the activity of antioxidant enzymes,251
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decreases oxidative stress,251 and prevents apoptosis

under oxidizing conditions by stimulating growth-

oriented intracellular signaling pathways.252 It is

tempting to suspect a similarly protective role for

CGRP in the brain. Similarly albumin, released into

the dura by protein extravasation in migraines, is the

main antioxidant in plasma.253 In the brain, albumin

causes astrocytes to release oleic acid, which is neuro-

trophic.254 Further, serotonin, released into the blood

by platelets255 and perhaps throughout the cortex by

the dorsal raphe nucleus during a migraine,256 may

have neurotrophic properties,257,258 and cause the

release of other neural growth factors.259 Platelet acti-

vation, which takes place in migraine260 as it does in

tissue injury, is neuroprotective and neurorestorative

in an in vivo model of cerebral ischemia.261

Table.—Type and Strength of Evidence Linking Migraine Triggers to Oxidative Stress

Trigger Sources of Oxidative Stress Type of Evidence
Strength of
Evidence

Dietary
Alcohol NOX2, microglial activation,

CYP2E1, mitochondrial tox-
icity, vasculature

In vitro, animal
human (indirect)

111

Water deprivation Vasculature Animal 11

Monosodium glutamate Excitotoxicity Animal 11

Aspartame Excitotoxicity, microglial acti-
vation, mitochondrial toxic-
ity, microsomes, depletion of
glutathione

In vitro, animal 111

Tyramine MAO In vitro 1

b-Phenylethylamine Mitochondrial toxicity In vitro, animal 1

Flavonoids Direct pro-oxidants under
some circumstances

In vitro 1

Nitrates Xanthine oxidase In vitro 1

Environmental
Noise Unknown (? excitotoxicity) Animal 11

Weather and pollution Microglial activation In vitro, animal 11

Physiological
Hypoglycemia NOX2, excitotoxicity Animal 1

Hypoxia NOX2, mitochondrial dysfunc-
tion, xanthine oxidase, nitric
oxide synthase

Animal 11

Infection NOX2 Animal 111

Estrogen withdrawal Loss of antioxidant and antiex-
citotoxic properties

In vitro, animal 1

Behavioral
Sleep cycle Decrease in antioxidant

enzymes, depletion of
glutathione

Animal 11

Mental overwork Mitochondria (oxidative
phosphorylation)

Animal 1

Stress NOX2 Animal 111

Daily hassles Unknown Animal 11

Pharmacological
Nitroglycerin Indirect pro-oxidant under

some circumstances
Animal 11

“Strength of Evidence” is based on the number of pathways by which a trigger generates oxidative stress and their likelihood
of being relevant in daily life: (111) 5 Multiple well-established mechanisms demonstrated in vivo at plausible levels of expo-

sure; (11) 5 A single strong source of oxidative stress demonstrated in vivo, but with uncertain mechanism and/or a level of
exposure higher than would be encountered in daily life; (1) 5 In vitro or limited in vivo data.
CYP2E1 5 cytochrome P450-2E1; MAO 5 monoamine oxidase; NOX2 5 NADPH oxidase-2.
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Nonetheless, a neuroprotective role of migraines

remains highly speculative at this point.

CONCLUSION

Regardless, we have seen that underlying each

of the traditional migraine triggers is their propensity

to generate oxidative stress. This suggests that the

recent discovery of the TRPA1 ion channel and the

indications of higher oxidative stress and/or lower

antioxidant defenses in migraineurs allow us to posit

a physiologically informed principle uniting seem-

ingly disparate migraine triggers and suggest a mech-

anism for an evolutionary advantage of migraines.
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